tizedik
> evalf(int(x^2+1,x=-1..1));
2.666666667
> f:=x->x^2+1;
f := proc (x) options operator, arrow; x^2+1 end proc
> ff:=evalf(f(-sqrt(3)/3)+f(sqrt(3)/3));
ff := 2.666666667
> evalf(int(x^3-1,x=0..2));
2.
> g:=x->x^3-1;
g := proc (x) options operator, arrow; x^3-1 end proc
> gg:=evalf(g((-sqrt(3)/3)+1)+g((sqrt(3)/3)+1));
gg := 1.999999999
> z:=x->cos(Pi*x);
z := proc (x) options operator, arrow; cos(Pi*x) end proc
> evalf(int(cos(Pi*x),x=0..1));
0.
> zz:=evalf((1/2)*((5/9)*z((-(-sqrt(15)/5)+1)/2))+(8/9)*z(1/2)+(5/9)*z((-(sqrt(15)/5)+1)/2));
zz := .2605477402
> n:=x->x^2+3*x+2;
n := proc (x) options operator, arrow; x^2+3*x+2 end proc
> diff(n(x),x);
2*x+3
> nn=expand((n(x+0.01)-n(x))/0.01);
nn = 3.01+2.*x
> m:=x->sin(x);
m := sin
> diff(diff(m(x),x),x);
-sin(x)
> mm:=expand((m(x+0.01)-2*m(x)+m(x-0.01))/0.01^2);
mm := -.99999*sin(x)
> xx:=[1,2,3,4,5];
xx := [1, 2, 3, 4, 5]
> yy:=[1,-3,-1,0,1];
yy := [1, -3, -1, 0, 1]
> c:=interp(xx,yy,x);
c := 1/3*x^4-9/2*x^3+65/3*x^2-85/2*x+26
> D(2.5)(c);
0
> px:=[Pi/2,Pi,3*Pi/2,2*Pi,5*Pi/2];
px := [Pi/2, Pi, 3*Pi/2, 2*Pi, 5*Pi/2]
> py:=[1,0,-1,0,1];
py := [1, 0, -1, 0, 1]
> d:=interp(px,py,x);
d := -8*x^4/(3*Pi^4)+16*x^3/Pi^3-94*x^2/(3*Pi^2)+22*x/Pi-4
> D(Pi)(d);
0
> with(CurveFitting);
>
[BSpline, BSplineCurve, Interactive, LeastSquares, PolynomialInterpolation, RationalInterpolation, Spline, ThieleInterpolation]
> PolynomialInterpolation(px,py,x,Newton);
-8*x^4/(3*Pi^4)+16*x^3/Pi^3-94*x^2/(3*Pi^2)+22*x/Pi-4
> with(plots);
Warning, the name changecoords has been redefined
[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, cylinderplot, densityplot, display, disp...[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, cylinderplot, densityplot, display, disp...[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, cylinderplot, densityplot, display, disp...
> h:=[[x[0],y(x[0])]];
for i from 0 to 9 do
x[0]:=0;
y(x[0]):=2;
x[i+1]:=x[i]+0.1;
y(x[i+1]):=y(x[i])+0.1*(1+x[i]^2);
h:=[op(h),[x[i+1],y(x[i+1])]];
end do;
h := [[0, 2]]
x[0] := 0
y(0) := 2
x[1] := .1
y(.1) := 2.1
h := [[0, 2], [.1, 2.1]]
x[0] := 0
y(0) := 2
x[2] := .2
y(.2) := 2.201
h := [[0, 2], [.1, 2.1], [.2, 2.201]]
x[0] := 0
y(0) := 2
x[3] := .3
y(.3) := 2.305
h := [[0, 2], [.1, 2.1], [.2, 2.201], [.3, 2.305]]
x[0] := 0
y(0) := 2
x[4] := .4
y(.4) := 2.414
h := [[0, 2], [.1, 2.1], [.2, 2.201], [.3, 2.305], [.4, 2.414]]
x[0] := 0
y(0) := 2
x[5] := .5
y(.5) := 2.530
h := [[0, 2], [.1, 2.1], [.2, 2.201], [.3, 2.305], [.4, 2.414], [.5, 2.530]]
x[0] := 0
y(0) := 2
x[6] := .6
y(.6) := 2.655
h := [[0, 2], [.1, 2.1], [.2, 2.201], [.3, 2.305], [.4, 2.414], [.5, 2.530], [.6, 2.655]]
x[0] := 0
y(0) := 2
x[7] := .7
y(.7) := 2.791
h := [[0, 2], [.1, 2.1], [.2, 2.201], [.3, 2.305], [.4, 2.414], [.5, 2.530], [.6, 2.655], [.7, 2.791]]
x[0] := 0
y(0) := 2
x[8] := .8
y(.8) := 2.940
h := [[0, 2], [.1, 2.1], [.2, 2.201], [.3, 2.305], [.4, 2.414], [.5, 2.530], [.6, 2.655], [.7, 2.791], [.8, 2.940]]
x[0] := 0
y(0) := 2
x[9] := .9
y(.9) := 3.104
h := [[0, 2], [.1, 2.1], [.2, 2.201], [.3, 2.305], [.4, 2.414], [.5, 2.530], [.6, 2.655], [.7, 2.791], [.8, 2.940], [.9, 3.104]]
x[0] := 0
y(0) := 2
x[10] := 1.0
y(1.0) := 3.285
h := [[0, 2], [.1, 2.1], [.2, 2.201], [.3, 2.305], [.4, 2.414], [.5, 2.530], [.6, 2.655], [.7, 2.791], [.8, 2.940], [.9, 3.104], [1.0, 3.285]]
> pointplot(h);
[Plot]
>
0 Comments:
Megjegyzés küldése
<< Home