Árpád apánk

Blog. ennyi. semmi több. megtalalsz itt jó pár infót rólam, az életemről, meg néhány érdekes dolgot is, csak épp fejlesszem ki. addig is türelem kispajtás :)

2008/05/20

negyedik

> with(linalg);

>

Warning, the protected names norm and trace have been redefined and unprotected

[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...

> plots[implicitplot]({x^2+2*y*x+5*y^2=350,x+3*y=23},x=-25..25,y=-25..25,scaling=constrained);

[Plot]

> solve({x^2+2*y*x+5*y^2=350,x+3*y=23},{x,y});

{x = -3/2*RootOf(2*_Z^2-46*_Z+179, label = _L2)+23, y = 1/2*RootOf(2*_Z^2-46*_Z+179, label = _L2)}

> allvalues(%);

{x = 23/4-9*19^(1/2)/4, y = 23/4+3*19^(1/2)/4}, {x = 23/4+9*19^(1/2)/4, y = 23/4-3*19^(1/2)/4}

> evalf(%);

{x = -4.057522624, y = 9.019174208}, {x = 15.55752262, y = 2.480825792}

> plots[implicitplot]({x^2+y*x=125,x+3*y=23},x=-20..20,y=-20..20,scaling=constrained);

[Plot]

> solve({x^2+y*x=125,x+3*y=23},{x,y});

{x = RootOf(2*_Z^2+23*_Z-375, label = _L4), y = -1/3*RootOf(2*_Z^2+23*_Z-375, label = _L4)+23/3}

> allvalues(%);

{y = 115/12-3529^(1/2)/12, x = -23/4+3529^(1/2)/4}, {x = -23/4-3529^(1/2)/4, y = 115/12+3529^(1/2)/12}

> evalf(%);

{y = 4.632884420, x = 9.101346740}, {y = 14.53378225, x = -20.60134674}

> plots[implicitplot]({cos(x)+cos(y)=0.23,sin(x)+sin(y)=1.23},x=-Pi..Pi,y=-Pi..Pi,scaling=constrained);

[Plot]

> solve({cos(x)+cos(y)=0.23,sin(x)+sin(y)=1.23},{x,y});

{y = 2.280758772, x = .4911198178}, {x = 2.280758772, y = .4911198178}

> allvalues(%);

Error, (in allvalues) invalid option {x = 2.280758772, y = .4911198178}

> evalf(%);

{y = 2.280758772, x = .4911198178}, {x = 2.280758772, y = .4911198178}

> plots[implicitplot]({x*(x-y)+y*(2*x-3*y)=-3,x*(x+y+x*y)=145},x=-20..20,y=-20..20,scaling=constrained);

[Plot]

> fsolve({x*(x-y)+y*(2*x-3*y)=-3,x*(x+y+x*y)=145},{x,y});

{x = -6.457609273, y = 2.931049150}

> allvalues(%);

{x = -6.457609273, y = 2.931049150}

> evalf(%);

{x = -6.457609273, y = 2.931049150}

> plots[implicitplot3d]({x*(x+y+z)=18,ln((x+1)*(z+2)/(y+3))=-0.6931,exp(1/2*x^2)*sin(5*x+2*z)=-5.5491},x=-20..20,y=-20..20,z=-20..20,scaling=constrained);

[Plot]

> seqsol:=NULL;

seqsol :=

> for i from 1 to 5 do
for j from 1 to 5 do

for k from 1 to 5 do

seqsol:=seqsol,fsolve({E1,E2,E3},{x=i,y=j,z=k}):

enddo;

enddo;

enddo;

>

>

Warning, premature end of input

>