Blog. ennyi. semmi több. megtalalsz itt jó pár infót rólam, az életemről, meg néhány érdekes dolgot is, csak épp fejlesszem ki. addig is türelem kispajtás :)
otodik
> | plot([f(x),ap(x)],x=1..6,color=[red,blue]); |
> | [evalf(4+i/10),evalf(f(4+i/10)),evalf(ap(4+i/10)),evalf(f(4+i/10)-ap(4+i/10))] $i=-5..5; |
> | linearis:=proc(f,a,x) return (f(a)+D(f)(a)*(x-a)); end proc; |
> | kvadratikus:=proc(f,a,x) return (f(a)+D(f)(a)*(x-a)+1/2*(D@@2)(f)(a)*(x-a)^2); end proc; |
> | taylor1:=proc(f,n,a,x) local i, t; t:=0; for i from 0 to n do t:=t+(D@@i)(f)(a)/i!*(x-a)^i; end do; return t; end proc; |
> | ts:=taylor(exp(x),x=3,5); |
> | pts:=convert(ts,'polynom'); |
> | fts:=x->exp(3)+exp(3)*(x-3)+1/2*exp(3)*(x-3)^2+1/6*exp(3)*(x-3)^3+1/24*exp(3)*(x-3)^4; |
Warning, the protected name Chi has been redefined and unprotected
> | b:=coeftayl(z(x),x=0,3); |
> | explim:=Limit(Sum(x^i,i=0..n),n=infinity); |
> | explim1:=limit(sum(x^i,i=0..n),n=infinity); |
0 Comments:
Megjegyzés küldése
<< Home