Árpád apánk

Blog. ennyi. semmi több. megtalalsz itt jó pár infót rólam, az életemről, meg néhány érdekes dolgot is, csak épp fejlesszem ki. addig is türelem kispajtás :)

2008/05/20

elso

> a:=2;

a := 2

> b:=3;

b := 3

> a*b;

> evalf(a*b);

6

6.

> c:=Pi;

c := Pi

> a*c;

2*Pi

> evalf(a*c);

6.283185308

> A:=matrix([[1,2],[2,3]]);

A := matrix([[1, 2], [2, 3]])

> evalm(A&*B);

matrix([[5, 8], [8, 13]])

> B:=matrix([[1,2],[2,3]]);

B := matrix([[1, 2], [2, 3]])

> eq1:=a*x^2+b*x+c=0;

eq1 := 2*x^2+3*x+Pi = 0

> solve(eq1,x);

-3/4+1/4*I*(-9+8*Pi)^(1/2), -3/4-1/4*I*(-9+8*Pi)^(1/2)

> evalf(%);

-.7500000000+1.004139595*I, -.7500000000-1.004139595*I

> eq2:=exp(x2)=x;

eq2 := exp(x2) = x

> evalm(eq2);

exp(x2) = x

> solve(eq2,x);

exp(x2)

> eq3:=sin(x)=ln(x);

eq3 := sin(x) = ln(x)

> evalf(solve(eq3,x));

0.9969568024e-1-1.191856097*I

> f(x):=sin(x);

f(x) := sin(x)

> plot(f(x),x=0..2*Pi);

[Plot]

> f(x,y):=sin(x*y);

f(x, y) := sin(x*y)

> plot3d(f(x,y),x=-Pi..Pi,y=-Pi..Pi);

[Plot]

> with(plots);

Warning, the name changecoords has been redefined

[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, cylinderplot, densityplot, display, disp...[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, cylinderplot, densityplot, display, disp...[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, cylinderplot, densityplot, display, disp...

> f(x,y,t):=cos(x*t)*sin(y*t);

f(x, y, t) := cos(x*t)*sin(y*t)

> animate3d(cos(t*x)*sin(t*y),x=-Pi..Pi, y=-Pi..Pi,t=1..2);

[Plot]

> f(x):=x*exp(x);

f(x) := x*exp(x)

> diff(x*exp(x),x);

exp(x)+x*exp(x)

> y’=a*y;

> deq1:=diff(y(x),x)=-a*y(x);

`y’` = 2*y

deq1 := diff(y(x), x) = -2*y(x)

> dsolve(deq1,y(x));

y(x) = _C1*exp(-2*x)

> f(x):=a*e^(-b*x);

f(x) := 2*e^(-3*x)

> int(a*exp(-b*x),x);

-2/3*exp(-3*x)

> int(a*exp(-b*x),x=2..4);

-2/3*exp(-12)+2/3*exp(-6)

> evalf(int(a*exp(-b*x),x=2..4));

0.1648405309e-2

> h:=proc(t) plot(sin(t*x),x=0..2*Pi) end;

>

>

h := proc (t) plot(sin(t*x), x = 0 .. 2*Pi) end proc

> h(3);

[Plot]

> with(DEtools):

> DEplot(diff(y(x),x)=ln(y(x)^2+3)-sin(x),y(x),x=0..4,[[y(0)=4]]);

[Plot]

> egyenlet:=x(t)*diff(x(t),t$2)=1/(x(t)*y(t)*z(t)),y(t)*diff(y(t),t$2)=1/(x(t)*y(t)*z(t)),z(t)*diff(z(t),t$2)=1/(x(t)*y(t)*z(t));

egyenlet := x(t)*(diff(x(t), `$`(t, 2))) = 1/(x(t)*y(t)*z(t)), y(t)*(diff(y(t), `$`(t, 2))) = 1/(x(t)*y(t)*z(t)), z(t)*(diff(z(t), `$`(t, 2))) = 1/(x(t)*y(t)*z(t))

> sol:=dsolve({egyenlet,x(0)=1,y(0)=1,z(0)=1,D(x)(0)=0,D(y)(0)=0,D(z)(0)=0},{x(t),y(t),z(t)},type=numeric,output=listprocedure);

sol := [t = proc (t) option `Copyright (c) 1993 by the University of Waterloo. All rights reserved.`; t end proc, x(t) = proc (t) local res, solnproc, outpoint, ndsol; option `Copyright (c) 2000 by Wa...

> xx:= subs(sol,x(t)); yy:= subs(sol,y(t)); zz:= subs(sol,z(t));

xx := proc (t) local res, solnproc, outpoint, ndsol; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 14; if _EnvInFsolve = true th...

yy := proc (t) local res, solnproc, outpoint, ndsol; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 14; if _EnvInFsolve = true th...

zz := proc (t) local res, solnproc, outpoint, ndsol; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 14; if _EnvInFsolve = true th...

> plot(xx*yy*zz,0..10);

[Plot]

>