kilencedik
> with(student);
[D, Diff, Doubleint, Int, Limit, Lineint, Product, Sum, Tripleint, changevar, completesquare, distance, equate, integrand, intercept, intparts, leftbox, leftsum, makeproc, middlebox, middlesum, midpoi...[D, Diff, Doubleint, Int, Limit, Lineint, Product, Sum, Tripleint, changevar, completesquare, distance, equate, integrand, intercept, intparts, leftbox, leftsum, makeproc, middlebox, middlesum, midpoi...
> f:=x->x^7*ln(x)+x-cos(x);
f := proc (x) options operator, arrow; x^7*ln(x)+x-cos(x) end proc
> g:=x->exp(-x^2);
g := proc (x) options operator, arrow; exp(-x^2) end proc
> h:=x->exp(x)*sin(x);
h := proc (x) options operator, arrow; exp(x)*sin(x) end proc
> evalf(int(f(x),x=2..3));
783.5712461
> evalf(int(g(x),x=-1..1));
1.493648266
> evalf(int(h(x),x=0..Pi));
12.07034632
> middlebox(f(x),x=2..3);
[Plot]
> evalf(middlesum(f(x),x=2..3,10));
781.0907780
> evalf(simpson(f(x),x=2..3,100));
783.5712470
> middlebox(g(x),x=-1..1,10);
[Plot]
> evalf(middlesum(g(x),x=-1..1));
1.509195888
> evalf(simpson(g(x),x=-1..1,100));
1.493648269
> middlebox(h(x),x=0..Pi,10);
[Plot]
> evalf(middlesum(h(x),x=0..Pi));
12.66778405
> evalf(simpson(h(x),x=0..Pi,100));
12.07034606
> teglalap:=proc(f,a,b,n)
local h,d;
h:=(b-a)/n;
d:=(b-a)/n*sum(f(a-h/2+i*h),i=1..n);
return evalf(d);
end proc;
>
teglalap := proc (f, a, b, n) local h, d; h := (b-a)/n; d := (b-a)*(sum(f(a-1/2*h+i*h), i = 1 .. n))/n; return evalf(d) end proc
> teglalap(f,2,3,10);
781.0907781
> with(Student[Calculus1]);
[AntiderivativePlot, ApproximateInt, ArcLength, Asymptotes, Clear, CriticalPoints, DerivativePlot, ExtremePoints, FunctionAverage, FunctionChart, GetMessage, GetNumProblems, GetProblem, Hint, Inflecti...[AntiderivativePlot, ApproximateInt, ArcLength, Asymptotes, Clear, CriticalPoints, DerivativePlot, ExtremePoints, FunctionAverage, FunctionChart, GetMessage, GetNumProblems, GetProblem, Hint, Inflecti...[AntiderivativePlot, ApproximateInt, ArcLength, Asymptotes, Clear, CriticalPoints, DerivativePlot, ExtremePoints, FunctionAverage, FunctionChart, GetMessage, GetNumProblems, GetProblem, Hint, Inflecti...
> ApproximateInt(f(x),x=2..3);
5/2+271818611107/12800000000*ln(43/20)-1/10*cos(9/4)-1/10*cos(43/20)-1/10*cos(41/20)-1/10*cos(11/4)-1/10*cos(53/20)-1/10*cos(51/20)-1/10*cos(49/20)-1/10*cos(47/20)-1/10*cos(59/20)-1/10*cos(57/20)+2488...5/2+271818611107/12800000000*ln(43/20)-1/10*cos(9/4)-1/10*cos(43/20)-1/10*cos(41/20)-1/10*cos(11/4)-1/10*cos(53/20)-1/10*cos(51/20)-1/10*cos(49/20)-1/10*cos(47/20)-1/10*cos(59/20)-1/10*cos(57/20)+2488...
>
0 Comments:
Megjegyzés küldése
<< Home